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• Identification of sensing context is essential to assess the 
quality of spatio-temporal sensed datasets

• Public crowd-sensed datasets have only limited features 
comparing to the many sensors available on a mobile device 

• How to identify context in such feature limited datasets?

• Comparison with ML models built by TPOT (an AutoML tool) 
[4]
• Training on 80% of the ground-truth dataset

• Identify Balanced Accuracy, Precision, Recall and F1 Score 
(see Table 2)

• Best balanced accuracy achieved when !"# = 313 m (see 
Figure 3) 

• In/out pocket, under/over-ground, and in/out-door require 
0kB, 4kB, and 0kB memory, respectively

• Our three heuristics based unsupervised binary classifier
algorithms take 0.08sec, 0.17sec and 0.003sec, respectively, 
for execution

• Our in/out-pocket achieves equivalent performance, our 
under/over-ground and in/out-door achieve balanced 
accuracy lower by 4.3% and 1%, respectively 

• Our algorithms are very lightweight: Context can also be 
mined onboard and remain private to authorized 
applications
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• Knowledge of context such as in/out-pocket, under/over-
ground and in/out-door is key: 
• Accelerometer’s precision varies with in/out-pocket [1]
• GPS accuracy can be very low when underground [2]
• Jump lengths are short when indoor

• Related work relies on rich features and algorithms (see 
Table 1)

• We propose simple and effective heuristics based 
unsupervised binary classifiers (see Figure 1) that can work 
with the available limited features
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FIGURE 1: (a) Under/Over-ground assignment, (b) In/Out-door assignment, and (c) In/Out-Pocket assignment

TABLE 2: Accuracy, Precision, Recall and F1 Score reported by different methods

FIGURE 2: Ambiciti application monitors the 
environmental pollution a user is exposed to [3]

Method
Balanced

Accuracy (%) Precision recall F1 score

!"# in m 80-20 split in out in out in out

In/out-pocket
Gaussian NB+,#

Ours
-
-

54
54

0.33
0.19

0.78
0.89

0.19
0.19

0.89
0.89

0.24
0.19

0.83
0.89

Under/over-ground Bernoulli NB+,*

Ours
313
313

74.5
70.2

0.33
0.62

0.97
0.78

0.81
0.62

0.68
0.78

0.46
0.62

0.79
0.78

In/out-door
Bernoulli NB+,-

Ours
313
313

66
65

0.42
0.62

0.84
0.68

0.7
0.62

0.62
0.68

0.53
0.62

0.71
0.68

inPocket = False
if measurement is made “manually” then

inPocket = False
else

if proximity == True then
inPocket = True

end
end

underground = False
if altitude >= 0 then

underground = False
else if altitude < 0 then

underground = True
else

# also valid in case when altitude 
# is not given;
if point near underground station then 

underground = True
end

end

indoor = False
if underground == True then

indoor = True
else 

if activity is still or stationary then
indoor = True

else
if connected via WiFi then 

indoor = True
end

end
end

TABLE 1: Features and Algorithms used by different related studies

Features used Different Algorithms used

In/out-Pocket
Light Intensity, Proximity distance, Noise level, 

Acceleration
Conditional checks, temporal smoothening, GMM, SVM, 

Variance, FFT

Under/over-ground Pressure Moving average

In/out-door

Light intensity, Magnetic strength, WiFi RSSI, 
Proximity distance, RSSI level, Time, Mobility 

Activity, Acceleration, Altitude, S/N Ratio, Direction, 
# turns when moving 

HMM, CIMAP, semi-Markov CRF, conditional checks, KNN, 
modified GPS info. detection, SVM, sliding window 

(a) (b) (c)

+: Best algorithm identified by TPOT, #: priors = None, var_smoothing = 10-9, *: $ = 1, binarize = 0.0, fit_prior = False, class_prior = 
None, -: $ = 0.001, binarize = 0.0, class_prior = None, fit_prior = False

FIGURE 3: Effect of !"# on balanced accuracy

• Users provide ground-truth data for datapoints collected 
using Ambiciti application (see Figure 2)

• Use Paris metro data to identify underground points. All 
points within radius of !"# m of an underground station are 
tagged as underground
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